Respuesta :

we have the function

[tex]f(x)=\log _43x+2[/tex]

step 1

Let

y=f(x)

[tex]y=\log _43x+2[/tex]

step 2

Exchange the variables (x for y and y for x)

[tex]x=\log _43y+2[/tex]

step 3

Isolate the variable y

[tex]\begin{gathered} x=\log _43y+2 \\ (x-2)=\log _43y \\ 4^{(x-2)}=3y^{} \\ y=\frac{4^{(x-2)}}{3} \end{gathered}[/tex]

therefore

The inverse function is equal to

[tex]f^{-1}(x)=\frac{4^{(x-2)}}{3}[/tex]