Given the points (2, 5) and (0, 0)
To determine if the points lie on the graph of
[tex]4x-3y=0[/tex]For point (2, 5)
Where x = 2
[tex]\begin{gathered} 4x-3y=0 \\ 4(2)-3y=0 \\ 8-3y=0 \\ 3y=8 \\ \text{Divide both sides by 3} \\ \frac{3y}{3}=\frac{8}{3} \\ y=2\frac{2}{3} \end{gathered}[/tex]Where y = 5
[tex]\begin{gathered} 4x-3y=0 \\ 4x-3(5)=0 \\ 4x-15=0 \\ 4x=15 \\ \text{Divide both sides by 4} \\ \frac{4x}{4}=\frac{15}{4} \\ x=3\frac{3}{4} \end{gathered}[/tex]From the deduction, point (2, 5) doesn't lie on the graph of 4x-3y=0
For point (0, 0)
Where x = 0
[tex]\begin{gathered} 4x-3y=0 \\ 4(x)-3y=0 \\ -3y=0 \\ y=0 \end{gathered}[/tex]Where y = 0
[tex]\begin{gathered} 4x-3y=0 \\ 4x-3(0)=0 \\ 4x=0 \\ x=0 \end{gathered}[/tex]From the deduction, point (0, 0) lie on the graph of 4x-3y=0
Since, only one of the points (0, 0) lie on the graph,
Hence, the statement is false.