Respuesta :

Given the function:

[tex]y=\cot (x+\frac{\pi}{6})[/tex]

Let's graph the function.

Apply the form:

[tex]y=a\cot (bx-c)+d[/tex]

Thus, we have the values:

a = 1

b = 1

c = - π/6

d = 0

Here, the graph does not have a minimum of maximum value, hence there is no amplitude.

To find the period, we have:

[tex]period=\frac{\pi}{|b|}=\frac{\pi}{1}=\pi[/tex]

For the phase shift, we have:

[tex]\frac{c}{b}=\frac{-\frac{\pi}{6}}{1}=-\frac{\pi}{6}[/tex]

Therefore, the graph of the function is:

Ver imagen EvoraP259183