Solution
- The question would like us to solve the following
[tex]\frac{x-3}{2}-4<\frac{x}{3}[/tex]- The solution is outlined below:
[tex]\begin{gathered} \frac{x-3}{2}-4<\frac{x}{3} \\ \\ Collect\text{ like terms:} \\ Add\text{ 4 to both sides and Subtract }\frac{x}{3}\text{ from both sides} \\ \\ \frac{x-3}{2}-\frac{x}{3}<4 \\ \\ We\text{ need the LCM of 2 and 3. } \\ The\text{ LCM is }2\times3=6 \\ \\ Thus,\text{ multiply both sides by 6 in order to remove the denominator} \\ 2\frac{}{} \end{gathered}[/tex][tex]\begin{gathered} 6\left(\frac{x-3}{2}\right?-6\left(\frac{x}{3}\right?<4\times6 \\ \\ 3\left(x-3\right)-2x<24 \\ Expand\text{ the bracket} \\ 3x-9-2x<24 \\ x-9<24 \\ Add\text{ 9 to both sides} \\ x<33 \end{gathered}[/tex]Final Answer
The answer is x < 33