Respuesta :

In the graph you can see that the line passes through 2 points (-4,0) and (0,2). With them you can obtain the equation of the line. First you find the slope of the line with the following equation

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ \text{Where} \\ m\colon\text{ Slope of the line} \\ (x_1,y_1)\colon\text{ Coordinates of first point }on\text{ the line} \\ (x_2,y_2)\colon\text{ Coordinates of second point }on\text{ the line} \end{gathered}[/tex]

So you have,

[tex]\begin{gathered} (x_1,y_1)=(-4,0) \\ (x_2,y_2)=(0,2) \\ m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{2-0}{0-(-4)} \\ m=\frac{2}{4}=\frac{1}{2} \end{gathered}[/tex]

Now, with the point slope equation you can obtain the equation of the line

[tex]\begin{gathered} y-y_1=m(x_{}-x_1) \\ y-0=\frac{1}{2}(x-(-4)) \\ y=\frac{1}{2}(x+4) \\ y=\frac{1}{2}x+\frac{1}{2}\cdot4 \\ y=\frac{1}{2}x+\frac{4}{2} \\ y=\frac{1}{2}x+2 \end{gathered}[/tex]

Therefore, the equation of the line is

[tex]y=\frac{1}{2}x+2[/tex]