The triangle is shown below:
Notice how this is an isosceles triangle.
We can find the lengths of the hypotenuse by using the trigonometric functions:
[tex]\sin \theta=\frac{\text{opp}}{\text{hyp}}[/tex]Then we have:
[tex]\begin{gathered} \sin 45=\frac{21}{hyp} \\ \text{hyp}=\frac{21}{\sin 45} \\ \text{hyp}=29.7 \end{gathered}[/tex]Therefore the hypotenuse is 29.7 ft.