Answer:
Lower limit: 11.7 cm
Upper limit: 16.263
Explanation:
The formula to find the lower and upper limits of the confidence interval (given the data is normally distributed) is :
[tex]CI=\mu\pm Z^*\frac{\sigma}{\sqrt{n}}[/tex]Where:
• μ = sample mean
,• σ = sample standard deviation
,• Z* = critical value of the z-distribution
,• n = is the sample size
In this case:
• μ = 14cm
• σ = 4cm
,• n = 12
The critical value of the z-distribution for a confidence interval of 95% is Z* = 1.96
Now, we can use the formula above to find the upper and lower limit:
[tex]CI=14\pm1.96\cdot\frac{4}{\sqrt{12}}=14\pm\frac{98\sqrt{3}}{75}=\frac{1050\pm98\sqrt{3}}{75}[/tex]Thus:
[tex]Lower\text{ }limit=\frac{1050-98\sqrt{3}}{75}\approx11.736cm[/tex][tex]Upper\text{ }limit=\frac{1050-98\sqrt{3}}{75}\approx16.263cm[/tex]Rounded to one decimal:
Lower limit: 11.7cm
Upper limit: 16.3cm