The work required to stretch a string is given by the following equation:
[tex]W=\frac{1}{2}kx^2[/tex]Where:
[tex]\begin{gathered} k=\text{ string constant} \\ x=\text{ distance the string is stretched} \end{gathered}[/tex]If the string is stretched 2 cm then we substitute the value of "x = 2" in the formula, we get:
[tex]W_2=\frac{1}{2}k(2)^2[/tex]Solving the square and simplifying:
[tex]W_2=2k[/tex]Now, if the string is stretched 1 cm we get:
[tex]W_1=\frac{1}{2}k(1)^2[/tex]Solving the operations:
[tex]W_1=\frac{1}{2}k[/tex]Now, we determine the quotient between W2 and W1:
[tex]\frac{W_2}{W_1}=\frac{2k}{\frac{1}{2}k}[/tex]Simplifying we get:
[tex]\frac{W_2}{W_1}=4[/tex]Now, we multiply both sides by W2:
[tex]W_2=4W_1[/tex]Therefore, the work required to stretch the string 2 cm is 4 times the work to stretch it 1 cm.