Respuesta :

Given that;

[tex]\begin{gathered} \measuredangle MOP\text{ is a right angle.} \\ \measuredangle MOP=90^0 \end{gathered}[/tex]

And;

[tex]\vec{RP}\perp\vec{OP}[/tex]

Since line RP is perpendicular to line OP, Angle RPO must be a right angle.

[tex]\measuredangle RPO=90^0[/tex]

Recall that for two parallel lines intersected by a straight line, Same side interior angles are supplementary.

[tex]A+B=180^0[/tex]

So, for line MO to be parallel to line RP, the sum of angle MOP and angle RPO must be equal to 180 degree.

[tex]\measuredangle MOP+\measuredangle RPO=90+90=180^0[/tex]

Since the sum of angle MOP and angle RPO is equal to 180 degree, then line MO is parallel to line RP.

[tex]\begin{gathered} \text{ Since} \\ \measuredangle MOP+\measuredangle RPO=180^0 \\ \text{Then;} \\ MO\Vert RP​ \end{gathered}[/tex]

Proved

Ver imagen LisandroZ483339