The Cumulative Density Function of [tex]Y[/tex] is the function [tex]F_{Y} (y)[/tex][tex]=y[/tex] on the interval [tex][0,1][/tex].
What is Cumulative Distribution Function?
Let [tex]X[/tex] be a continuous random variable with CDF [tex]F[/tex].
Now, define [tex]Y=F(X)[/tex]. Since we have that [tex]X[/tex] ∈ [tex]R[/tex], we will also have [tex]F(X)[/tex]∈[tex][0,1][/tex]. So, take any [tex]y[/tex]∈[0,1]. We have that,
[tex]P[/tex][tex]([/tex][tex]Y[/tex]≥[tex]y[/tex][tex])[/tex][tex]=[/tex][tex]P(F(X)[/tex]≤[tex]y[/tex][tex]=[/tex][tex]P(X\leq F^{-1} (y))[/tex][tex]=F(F^{-1}(y))[/tex][tex]=y[/tex]
So, we see that the CDF of [tex]Y[/tex] is the function [tex]F_{Y} (y)[/tex][tex]=y[/tex] on the interval [tex][0,1][/tex].
Hence, we have: [tex]Y[/tex]∼Unif[tex](0,1)[/tex].
Learn more about cumulative density function with the help of the given link:
https://brainly.com/question/13755479
#SPJ4