Respuesta :
Answer:
[tex]\boxed {\boxed {\sf 9.8}}[/tex]
Step-by-step explanation:
We are asked to find the distance between two points. We will calculate the distance using the following formula;
[tex]d= \sqrt {(x_2-x_1)^2+(y_2-y_1)^2[/tex]
In this formula, (x₁ , y₁) and (x₂ , y₂) are the 2 points. We are given the points (4,0) and (0,9). If we match the value and the corresponding variable, we see that:
- x₁= 4
- y₁= 0
- x₂= 0
- y₂= 9
Substitute the values into the formula.
[tex]{d= \sqrt {(0-4)^2+(9-0)^2[/tex]
Solve inside the parentheses.
- (0-4)= -4
- (9-0)= 9
[tex]d=\sqrt{(-4)^2+ (9)^2[/tex]
Solve the exponents. Remember that squaring a number is the same as multiplying it by itself.
- (-4)²= -4*-4= 16
- (9)²= 9*9= 81
[tex]d= \sqrt{(16)+(81)[/tex]
Add.
[tex]d= \sqrt{97[/tex]
Take the square root of the number.
[tex]d=9.848857802[/tex]
Round to the nearest tenth. The 4 in the hundredth place tells us to leave the 8 in the tenth place.
[tex]d\approx 9.8[/tex]
The distance between the two points (4,0) and (0,9) is approximately 9.8