Respuesta :

Step-by-step explanation:

Given

[tex] \sqrt{4} \times (2) \\ \sqrt{ {2}^{2} } \times 2 \\ = 2 \times 2 \\ = 4

Hope it will help :)❤

Look at the explanation to understand.

Step-by-step explanation:

Step 1.

Apply the rule. (a) = a

For this expression, (2) = 2

[tex]\sqrt{4}\times2[/tex]

Step 2.

Multiply 4 by 2.

4 × 2 = 8

Step 3.

Prime factorization of 8: 2³

[tex]\sqrt{2^3}[/tex]

Step 4.

Apply the exponent rule. [tex](a^b^+^c=a^b\times a^c)[/tex]

2³ = 2² × 2

[tex]\sqrt{2^2\times2}[/tex]

Step 5.

Apply the radical rule. [tex]\sqrt{ab}=\sqrt{a}\sqrt{b}, a\geq 0, b\geq 0[/tex]

[tex]\sqrt{2^2}\sqrt{2}[/tex]

Step 6.

Apply the radical rule again. [tex]\sqrt{a^2}=a, a\geq 0[/tex]

[tex]2\sqrt{2}=4[/tex]

Hence, 4 is the answer.