Respuesta :
Step-by-step explanation:
Given
[tex] \sqrt{4} \times (2) \\ \sqrt{ {2}^{2} } \times 2 \\ = 2 \times 2 \\ = 4
Hope it will help :)❤
Look at the explanation to understand.
Step-by-step explanation:
Step 1.
Apply the rule. (a) = a
For this expression, (2) = 2
[tex]\sqrt{4}\times2[/tex]
Step 2.
Multiply 4 by 2.
4 × 2 = 8
Step 3.
Prime factorization of 8: 2³
[tex]\sqrt{2^3}[/tex]
Step 4.
Apply the exponent rule. [tex](a^b^+^c=a^b\times a^c)[/tex]
2³ = 2² × 2
[tex]\sqrt{2^2\times2}[/tex]
Step 5.
Apply the radical rule. [tex]\sqrt{ab}=\sqrt{a}\sqrt{b}, a\geq 0, b\geq 0[/tex]
[tex]\sqrt{2^2}\sqrt{2}[/tex]
Step 6.
Apply the radical rule again. [tex]\sqrt{a^2}=a, a\geq 0[/tex]
[tex]2\sqrt{2}=4[/tex]
Hence, 4 is the answer.