As the variation is direct we have: [tex]y = kx ^ 2
[/tex] We must find the value of k. For this, we use the following data: y = 200 when x = 5 Substituting values we have: [tex]200 = k5 ^ 2
[/tex] Clearing k: [tex]k = 200/5 ^ 2
k = 200/25
k = 8[/tex] Then, the function is: [tex]y = 8x ^ 2
[/tex] We evaluate the function for x = -3 [tex]y = 8 (-3) ^ 2
y = 8 (9)
y = 72[/tex] Answer: the value of y when x = -3 is: c. 72